

CUBIT Capability Proposal

Technical Area
Geometry, Meshing, Infrastructure, GUI, Graphics, etc..

Technical Lead
Cubit Developer in charge of technical area

Parsing / Infrastructure Darryl

MRD Description
Describe the capability in terms of how a user would see it.

None – users shouldn’t see any change (except that some parsing errors should go away).

SRS Description
What needs to be done by Cubit developers to implement this capability? Break the tasks into steps if applicable. (Steps should be on
the order of 2 man-weeks or more)

Design and implement a new parsing infrastructure. The new infrastructure should
have the following characteristics:
1. Writing a single command syntax definition results in

a. Automatic command recognition (developer doesn’t have to write code to
decide which command is being requested by a text string).

b. Automatic use of abstractions where appropriate (such as parse_entities)
c. Automatic generation of the command’s help string

2. Commands can be specified independently. Changing the syntax or processing of
one command should have no effect on the syntax or processing of another
command.

3. When the parser recognizes a particular command, a specific function in the
CUBIT API is called with appropriate parameter values filled in with the results
of automatic parsing. The actual text of the command should never be required
by the API function.

4. More robust syntax checking than we currently have.
5. Should support all our current parsing features (aprepro, partial word completion,

syntax-based command line help)

Tasks include:
1. Identify a toolset for the job (flex/bison, ANTLR, Spirit?).
2. Design the new parsing infrastructure.
3. Implement the infrastructure
4. Enter syntax for existing commands into new system.
5. Hook up new commands to CUBIT API (see API proposal).

Justification
Describe why this is important and what impact it will have if it is implemented. (or not implemented).

Our current command handlers are fragile and intertwined. Changing code for one
command often has side effects on several other commands. It is nearly impossible to
determine all of the commands which use a particular piece of command handler code.
There is currently no guarantee that the help string matches the correct command syntax.
Most commands currently allow you to add junk to the end of the command and the
command is still executed; the junk at the end is ignored without error or warning. Many
commands also accept syntax errors in the middle of a command, with or without

warning. Some commands even reject correct syntax because of poor command handling
practices, but it’s difficult to fix because we can’t determine the consequences of a
change to the command handler without intimate understanding of the command in
question AND every other command that may use the same command handling code (and
since you can’t figure out which commands share that section of code…). Our current
command handlers currently mix a lot of command execution with command parsing,
which leads to partial command execution and to unintentional changes in behavior when
addressing parsing issues.
If a new parser is well designed, we should fix (or at least improve) all of the issues
described above.
Note that this tasks depends on the existence of a CUBIT API, proposed separately. It
should be possible to reverse the order of tasks so that the parsing infrastructure goes in
first, followed by the development of the CUBIT API. We could migrate to the new
parser one command at a time as they are made available via the API.

Resources
Who will work on this

Time estimate
How much time will it take in man-
weeks

Targeted Release
10.2 (August 06), 10.3 (March 2007), 10.4
(August 2007), Future (beyond FY07)

Darryl 25 weeks 10.4

Submitted By: Date:
Darryl 3/28/06

